225 research outputs found

    Do we still need supertrees?

    Get PDF
    The up-dated species level phylogeny for the carnivores using a supertree approach provides new insights into the evolutionary origin and relationships of carnivores. While the gain in biological knowledge is substantial, the supertree approach is not undisputed. I discuss the principles of supertree methods and the competitor supermatrix approaches. I argue that both methods are important to infer phylogenetic relationships

    The Probability of a Gene Tree Topology within a Phylogenetic Network with Applications to Hybridization Detection

    Get PDF
    Gene tree topologies have proven a powerful data source for various tasks, including species tree inference and species delimitation. Consequently, methods for computing probabilities of gene trees within species trees have been developed and widely used in probabilistic inference frameworks. All these methods assume an underlying multispecies coalescent model. However, when reticulate evolutionary events such as hybridization occur, these methods are inadequate, as they do not account for such events. Methods that account for both hybridization and deep coalescence in computing the probability of a gene tree topology currently exist for very limited cases. However, no such methods exist for general cases, owing primarily to the fact that it is currently unknown how to compute the probability of a gene tree topology within the branches of a phylogenetic network. Here we present a novel method for computing the probability of gene tree topologies on phylogenetic networks and demonstrate its application to the inference of hybridization in the presence of incomplete lineage sorting. We reanalyze a Saccharomyces species data set for which multiple analyses had converged on a species tree candidate. Using our method, though, we show that an evolutionary hypothesis involving hybridization in this group has better support than one of strict divergence. A similar reanalysis on a group of three Drosophila species shows that the data is consistent with hybridization. Further, using extensive simulation studies, we demonstrate the power of gene tree topologies at obtaining accurate estimates of branch lengths and hybridization probabilities of a given phylogenetic network. Finally, we discuss identifiability issues with detecting hybridization, particularly in cases that involve extinction or incomplete sampling of taxa

    Measuring adherence to antiretroviral treatment in resource-poor settings: The feasibility of collecting routine data for key indicators

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An East African survey showed that among the few health facilities that measured adherence to antiretroviral therapy, practices and definitions varied widely. We evaluated the feasibility of collecting routine data to standardize adherence measurement using a draft set of indicators.</p> <p>Methods</p> <p>Targeting 20 facilities each in Ethiopia, Kenya, Rwanda, and Uganda, in each facility we interviewed up to 30 patients, examined 100 patient records, and interviewed staff.</p> <p>Results</p> <p>In 78 facilities, we interviewed a total of 1,631 patients and reviewed 8,282 records. Difficulties in retrieving records prevented data collection in two facilities. Overall, 94.2% of patients reported perfect adherence; dispensed medicine covered 91.1% of days in a six month retrospective period; 13.7% of patients had a gap of more than 30 days in their dispensed medication; 75.8% of patients attended clinic on or before the date of their next appointment; and 87.1% of patients attended within 3 days.</p> <p>In each of the four countries, the facility-specific median indicators ranged from: 97%-100% for perfect self-reported adherence, 90%-95% of days covered by dispensed medicines, 2%-19% of patients with treatment gaps of 30 days or more, and 72%-91% of appointments attended on time. Individual facilities varied considerably.</p> <p>The percentages of days covered by dispensed medicine, patients with more than 95% of days covered, and patients with a gap of 30 days or more were all significantly correlated with the percentages of patients who attended their appointments on time, within 3 days, or within 30 days of their appointment. Self reported recent adherence in exit interviews was significantly correlated only with the percentage of patients who attended within 3 days of their appointment.</p> <p>Conclusions</p> <p>Field tests showed that data to measure adherence can be collected systematically from health facilities in resource-poor settings. The clinical validity of these indicators is assessed in a companion article. Most patients and facilities showed high levels of adherence; however, poor levels of performance in some facilities provide a target for quality improvement efforts.</p

    Coalescent-based genome analyses resolve the early branches of the euarchontoglires

    Get PDF
    Despite numerous large-scale phylogenomic studies, certain parts of the mammalian tree are extraordinarily difficult to resolve. We used the coding regions from 19 completely sequenced genomes to study the relationships within the super-clade Euarchontoglires (Primates, Rodentia, Lagomorpha, Dermoptera and Scandentia) because the placement of Scandentia within this clade is controversial. The difficulty in resolving this issue is due to the short time spans between the early divergences of Euarchontoglires, which may cause incongruent gene trees. The conflict in the data can be depicted by network analyses and the contentious relationships are best reconstructed by coalescent-based analyses. This method is expected to be superior to analyses of concatenated data in reconstructing a species tree from numerous gene trees. The total concatenated dataset used to study the relationships in this group comprises 5,875 protein-coding genes (9,799,170 nucleotides) from all orders except Dermoptera (flying lemurs). Reconstruction of the species tree from 1,006 gene trees using coalescent models placed Scandentia as sister group to the primates, which is in agreement with maximum likelihood analyses of concatenated nucleotide sequence data. Additionally, both analytical approaches favoured the Tarsier to be sister taxon to Anthropoidea, thus belonging to the Haplorrhine clade. When divergence times are short such as in radiations over periods of a few million years, even genome scale analyses struggle to resolve phylogenetic relationships. On these short branches processes such as incomplete lineage sorting and possibly hybridization occur and make it preferable to base phylogenomic analyses on coalescent methods

    Temperature Affects the Tripartite Interactions between Bacteriophage WO, Wolbachia, and Cytoplasmic Incompatibility

    Get PDF
    Wolbachia infections are a model for understanding intracellular, bacterial symbioses. While the symbiosis is often studied from a binary perspective of host and bacteria, it is increasingly apparent that additional trophic levels can influence the symbiosis. For example, Wolbachia in arthropods harbor a widespread temperate bacteriophage, termed WO, that forms virions and rampantly transfers between coinfections. Here we test the hypothesis that temperatures at the extreme edges of an insect's habitable range alter bacteriophage WO inducibility and in turn, Wolbachia densities and the penetrance of cytoplasmic incompatibility. We report four key findings using the model wasp, Nasonia vitripennis: First, both cold treatment at 18 C and heat treatment at 30 C reduce Wolbachia densities by as much as 74% relative to wasps reared at 25 C. Second, in all cases where Wolbachia densities decline due to temperature changes, phage WO densities increase and inversely associate with Wolbachia densities. Heat has a marked effect on phage WO, yielding phage densities that are 552% higher than the room temperature control. Third, there is a significant affect of insect family on phage WO and endoysmbiont densities. Fourth, at extreme temperatures, there was a temperature-mediated adjustment to the density threshold at which Wolbachia cause complete cytoplasmic incompatibility. Taken together, these results demonstrate that temperature simultaneously affects phage WO densities, endosymbiont densities, and the penetrance of cytoplasmic incompatibility. While temperature shock enhances bacteriophage inducibility and the ensuing bacterial mortality in a wide range of medically and industrially-important bacteria, this is the first investigation of the associations in an obligate intracellular bacteria. Implications to a SOS global sensing feedback mechanism in Wolbachia are discussed

    Measuring adherence to antiretroviral treatment in resource-poor settings: The clinical validity of key indicators

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Access to antiretroviral therapy has dramatically expanded in Africa in recent years, but there are no validated approaches to measure treatment adherence in these settings.</p> <p>Methods</p> <p>In 16 health facilities, we observed a retrospective cohort of patients initiating antiretroviral therapy. We constructed eight indicators of adherence and visit attendance during the first 18 months of treatment from data in clinic and pharmacy records and attendance logs. We measured the correlation among these measures and assessed how well each predicted changes in weight and CD4 count.</p> <p>Results</p> <p>We followed 488 patients; 63.5% had 100% coverage of medicines during follow-up; 2.7% experienced a 30-day gap in treatment; 72.6% self-reported perfect adherence in all clinic visits; and 19.9% missed multiple clinic visits. After six months of treatment, mean weight gain was 3.9 kg and mean increase in CD4 count was 138.1 cells/mm3.</p> <p>Dispensing-based adherence, self-reported adherence, and consistent visit attendance were highly correlated. The first two types of adherence measure predicted gains in weight and CD4 count; consistent visit attendance was associated only with weight gain.</p> <p>Conclusions</p> <p>This study demonstrates that routine data in African health facilities can be used to monitor antiretroviral adherence at the patient and system level.</p

    Gene Order Phylogeny of the Genus Prochlorococcus

    Get PDF
    Using gene order as a phylogenetic character has the potential to resolve previously unresolved species relationships. This character was used to resolve the evolutionary history within the genus Prochlorococcus, a group of marine cyanobacteria.Orthologous gene sets and their genomic positions were identified from 12 species of Prochlorococcus and 1 outgroup species of Synechococcus. From this data, inversion and breakpoint distance-based phylogenetic trees were computed by GRAPPA and FastME. Statistical support of the resulting topology was obtained by application of a 50% jackknife resampling technique. The result was consistent and congruent with nucleotide sequence-based and gene-content based trees. Also, a previously unresolved clade was resolved, that of MIT9211 and SS120.This is the first study to use gene order data to resolve a bacterial phylogeny at the genus level. It suggests that the technique is useful in resolving the Tree of Life

    Maximum likelihood models and algorithms for gene tree evolution with duplications and losses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The abundance of new genomic data provides the opportunity to map the location of gene duplication and loss events on a species phylogeny. The first methods for mapping gene duplications and losses were based on a parsimony criterion, finding the mapping that minimizes the number of duplication and loss events. Probabilistic modeling of gene duplication and loss is relatively new and has largely focused on birth-death processes.</p> <p>Results</p> <p>We introduce a new maximum likelihood model that estimates the speciation and gene duplication and loss events in a gene tree within a species tree with branch lengths. We also provide an, in practice, efficient algorithm that computes optimal evolutionary scenarios for this model. We implemented the algorithm in the program DrML and verified its performance with empirical and simulated data.</p> <p>Conclusions</p> <p>In test data sets, DrML finds optimal gene duplication and loss scenarios within minutes, even when the gene trees contain sequences from several hundred species. In many cases, these optimal scenarios differ from the lca-mapping that results from a parsimony gene tree reconciliation. Thus, DrML provides a new, practical statistical framework on which to study gene duplication.</p
    corecore